Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry
نویسندگان
چکیده
The widespread production and use of nanoparticles calls for faster and more reliable methods to assess their safety. The main aim of this study was to investigate the genotoxicity of three reference TiO2 nanomaterials (NM) within the frame of the FP7-NANoREG project, with a particular focus on testing the applicability of mini-gel comet assay and micronucleus (MN) scoring by flow cytometry. BEAS-2B cells cultured under serum-free conditions were exposed to NM100 (anatase, 50-150nm), NM101 (anatase, 5-8nm) and NM103 (rutile, 20-28nm) for 3, 24 or 48h mainly at concentrations 1-30 μg/ml. In the mini-gel comet assay (eight gels per slide), we included analysis of (i) DNA strand breaks, (ii) oxidised bases (Fpg-sensitive sites) and (iii) light-induced DNA damage due to photocatalytic activity. Furthermore, MN assays were used and we compared the results of more high-throughput MN scoring with flow cytometry to that of cytokinesis-block MN cytome assay scored manually using a microscope. Various methods were used to assess cytotoxic effects and the results showed in general no or low effects at the doses tested. A weak genotoxic effect of the tested TiO2 materials was observed with an induction of oxidised bases for all three materials of which NM100 was the most potent. When the comet slides were briefly exposed to lab light, a clear induction of DNA strand breaks was observed for the anatase materials, but not for the rutile. This highlights the risk of false positives when testing photocatalytically active materials if light is not properly avoided. A slight increase in MN formation for NM103 was observed in the different MN assays at the lower doses tested (1 and 5 μg/ml). We conclude that mini-gel comet assay and MN scoring using flow cytometry successfully can be used to efficiently study cytotoxic and genotoxic properties of nanoparticles.
منابع مشابه
Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity.
The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (rever...
متن کاملCytogenetic damage induced by crude oil in Anodonta cygnea (mollusca,bivalvia) assessed by the comet assay and micronucleus test
Crude oil is enriched in polycyclic aromatic hydrocarbons (PAHs). Many PAH analogs have proved to potentially damage DNA. DNA damage can be assessed using various biomarkers to find out the degree of genotoxicity of pollutants following in vitro exposure. In this research the comet assay and micronucleus (MN) test were used to detect DNA damages and cytogenetic changes following crude oil expos...
متن کاملCorrection: In Vivo Genotoxicity Assessment of Titanium Dioxide Nanoparticles by Allium cepa Root Tip Assay at High Exposure Concentrations
The industrial production and commercial applications of titanium dioxide nanoparticles have increased considerably in recent times, which has increased the probability of environmental contamination with these agents and their adverse effects on living systems. This study was designed to assess the genotoxicity potential of TiO2 NPs at high exposure concentrations, its bio-uptake, and the oxid...
متن کاملOccupational genotoxicity risk evaluation through the comet assay and the micronucleus test.
The micronucleus (MN) test and the alkaline single cell gel or comet assay were applied to exfoliated cells of the buccal mucous in order to evaluate the genotoxic risk associated with occupational exposure of 10 storage battery renovation workers, and 10 car painters, with age matched controls, in Pelotas, RS, in southern Brazil. In the MN test, 2000 exfoliated buccal cells were analyzed for e...
متن کاملThe role of DNA damage and caspase activation in cytotoxicity and genotoxicity of macrophages induced by bisphenol-A-glycidyldimethacrylate.
AIM To evaluate the potential toxicological implications of BisGMA on murine macrophage cell line RAW264.7. METHODOLOGY Lactate dehydrogenase release, flow cytometry, Western blot and fluorometric assays were used to detect cell viability, mode of cell death and caspase activities, respectively. In addition, alkaline single-cell gel electrophoresis and cytokinesis-block micronucleus assays we...
متن کامل